ADVANCED CISCO CERTIFIED NETWORK PROFESSIONAL (CCNP) CERTIFICATION TRAINING

Advanced training for Cisco Certified Network Professional (CCNP) certification is now available at Ranken Technical College. Our convenient evening classes are designed to help you work toward the next level in your certification goals.

Ranken is not only a certified Cisco Networking Academy, but also the 2008 awardee of the prestigious Cisco “4R” award in the category of academic rigor.

The CCNP curriculum builds upon Cisco Certified Networking Associate (CCNA) courses, adding more complex network configurations, diagnosis and troubleshooting strategies. These courses are designed for individuals wishing to become network engineers, network administrators and network technicians.

Geared towards the working adult, classes are conveniently offered in the evening, meeting just twice a week, from 6:00 p.m. to 10:00 p.m. Students may enroll in the CCNP program once they have successfully completed CCNA training within the Cisco Networking Academy or if they have a current CCNA certification.

Upon successful completion all of CCNP courses, students may wish to continue their education goals. Ranken offers a Bachelor of Science in Applied Management now, with an emphasis in Management Information Systems (MIS). In as little as 13 months you can earn your CCNP while concurrently earning credit hours toward your future degree.

COURSE DESCRIPTIONS

CNT300C IMPLEMENTING CISCO IP ROUTING

In this course, students will learn how to configure EIGRP across HDLC, Frame Relay, MPLS, VPN and MPLS virtual circuits. Students will also configure ISDP over HDLC, Frame Relay, PPP and over different WAN links. Time will be spent implementing alternate routing path control, implementing IPv6, analyzing branch office network designs and planning installations; and analyzing designs to support mobile workers and planning network modifications. Six credit hours.

CNT310C IMPLEMENTING CISCO IP SWITCHED NETWORKS

This course covers the skills necessary to plan, configure and verify the implementation of complex enterprise switching solutions using Cisco’s Campus Enterprise Architecture including, Secure integration of VLANs, WLANs, voice and video into campus networks. Six credit hours.

CNT320C TROUBLESHOOTING AND MAINTAINING CISCO IP NETWORKS

In this course, students will learn to plan and perform regular maintenance on complex enterprise routed and switched networks and use technology-based practices and a systematic ITIL-compliant approach to perform network troubleshooting. Six credit hours.

PROGRAM COURSES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNT300C</td>
<td>Implementing Cisco IP Routing</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>CNT310C</td>
<td>Implementing Cisco IP Switched Networks</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>CNT320C</td>
<td>Troubleshooting and Maintaining Cisco IP Networks</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>
In today’s highly complex society, technical industries and companies are being called upon to implement new technologies and equipment to improve efficiencies and maximize day-to-day operations. To minimize downtime and costly delays, companies are in need of qualified technicians capable of maintaining and repairing a wide variety of mechanical and electrical equipment. The Industrial Technology program offers comprehensive training in several of the most sought-after skills that companies are demanding as they seek employees with multi-craft talents.

Program graduates have expertise in a number of fields and are capable of stepping in and keeping equipment and machinery running in manufacturing plants, hotels or other mid-size or large companies. Recognized for their breadth of experience, they are qualified to solve most of the technical and industrial problems experienced by companies today. Additionally, our program prepares students for the EPA licensing exam covering refrigeration and air conditioning repair.

In addition to developing multiple skill sets, Industrial Technology graduates experience on-the-job diversity and increased flexibility in their career choices.

ASSOCIATE OF TECHNOLOGY, ASSOCIATE OF SCIENCE OR CERTIFICATE OF TECHNOLOGY

Ranken’s Industrial Technology program provides overall instruction, hands-on training and experience in the practices and skills needed by many facilities, including universities, hospitals, hotels and industrial businesses. The Industrial Technology program offers specialized instruction in the following areas:

- Basic electricity
- Introduction to Heating, Ventilation, Air Conditioning and Refrigeration (HVACR)
- Introduction to welding
- National Electrical Code, motor controls and Programmable Logic Controllers (PLCs)
- Basic pipelining and plumbing
- Carpentry maintenance
- Hydraulics principles & theory
- Welding (TIG, MIG and SMAW)
- Mechanical systems

Students interested in completing the certificate of technology program will take all technical courses in the associate degree program and two general education courses per semester.

Upon completion of the associate degree program, students are eligible for the Bachelor of Science in Applied Management (BSAM) program — and could graduate with a bachelor’s degree in as little as two short years.

PROGRAM COURSES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>INT1113</td>
<td>Industrial Mechanical Systems Theory</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>INT1114</td>
<td>Industrial Mechanical Systems Shop</td>
<td>8</td>
<td>INT1211 Welding/Metal Fabrication & Hydraulics Theory</td>
</tr>
<tr>
<td>INT1211</td>
<td>Welding/Metal Fabrication & Hydraulics Theory</td>
<td>5</td>
<td>INT1212 Welding/Metal Fabrication & Hydraulics Shop</td>
</tr>
<tr>
<td>INT1212</td>
<td>Welding/Metal Fabrication & Hydraulics Shop</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>INT2111</td>
<td>Industrial Facilities Maintenance Theory</td>
<td>5</td>
<td>INT2112 Industrial Facilities Maintenance Shop</td>
</tr>
<tr>
<td>INT2112</td>
<td>Industrial Facilities Maintenance Shop</td>
<td>8</td>
<td>INT2111 Industrial Facilities Maintenance Theory</td>
</tr>
<tr>
<td>INT2011</td>
<td>Industrial Electrical/PLC Theory</td>
<td>5</td>
<td>INT2012 Industrial Electrical/PLC Theory</td>
</tr>
<tr>
<td>INT2012</td>
<td>Industrial Electrical/PLC Shop</td>
<td>8</td>
<td>INT2011 Industrial Electrical/PLC Theory</td>
</tr>
</tbody>
</table>

Total Technical Credit Hours Required: 52
INT2111 INDUSTRIAL FACILITIES MAINTENANCE THEORY
Provides a broad overview in three areas of study. Carpentry maintenance focuses on small construction projects, such as hanging drywall, hanging doors, suspended ceilings, concrete floors, drywall taping and other building and grounds maintenance skills. Pipe fitting/plumbing maintenance includes the practical application of mathematics as well as the safe and proper use of hand and power tools used for soldering, brazing and PVC pipe and procedures used in the trade. The course also covers the mechanical refrigeration cycle, compressors and pressure temperature relationships. Five credit hours.

INT2112 INDUSTRIAL FACILITIES MAINTENANCE SHOP
Provides hands-on application of principles covered in INT2111, including basic carpentry projects that teach the student to measure, lay out and cut. Projects include the construction of an elevated wood and metal stud structure. Exposes students to drywall and taping, window and door installation and suspended ceiling grid and stair construction. Students assemble and install various copper and steel pipe and valves, PEX piping, and pumps will be covered as well as basic riving, lifting, and equipment layout theories. Eight credit hours.

INT2011 INDUSTRIAL ELECTRICAL/PLC THEORY
Begins with safety, basic electrical concepts and Ohm’s law. Progresses through alternating current, lighting, motors, relays, starters, overload devices, ladder logic, PID lighting equipment, basic programmable logic controller (PLC) knowledge and three-phase electrical systems and services. Introduces three-phase motors and control circuits. National Electric Code (NEC) requirements wiring methods, box fit, conductor ampacity, de-rating calculations and conduit bending. Five credit hours.

INT2012 INDUSTRIAL ELECTRICAL/PLC SHOP
Provides hands-on application of principles covered in INT2011 including the installation of a circuit breaker panel, receptacle, switching and lighting circuits per the National Electric Code (NEC). Eight credit hours.

COURSE DESCRIPTIONS

INT1113 INDUSTRIAL MECHANICAL SYSTEMS THEORY
This course covers the basics of drill presses, band saws, and associated hand tools. Students will examine mechanical fasteners and torque, discuss the fundamentals of blueprints, symbols and terms specific to industrial mechanical systems. Students will identify basic components such as bearings, seals and gaskets, and analyze the significance of these components in industrial systems. Students will be given the opportunity to understand the fundamentals of piping, heating and air conditioning, and pumps will be covered as well as basic rigging, lifting, and equipment layout theories. Five credit hours.

INT1114 INDUSTRIAL MECHANICAL SYSTEMS SHOP
This course provides a hands-on application of all principles covered in INT1113, including basic mechanical hand tools and drill press operation, removal of frozen or damaged fasteners, and installation/troubleshooting of various power transmission devices. Students will employ written documentation skills as applied to the industry. The will also apply Preventative and Predictive Maintenance procedures to increase equipment life and plant efficiency. Students will also demonstrate proper procedures to secure, support, lift and place loads. Eight credit hours.

INT1211 WELDING/METAL FABRICATION AND HYDRAULICS THEORY
Introduces safety, the correct use of tools and the fundamentals of welding. Covers processes like Shielded Metal Arc Welding (SMAW), Gas Metal Arc Welding (GMAW) and Gas Tungsten Arc Welding (TIG). Introduces oxy-fuel cutting and welding. Concludes with hydraulic fundamentals, principles and circuit analysis. Five credit hours.

INT1212 WELDING/METAL FABRICATION AND HYDRAULICS SHOP
Provides hands-on exposure to mild steel, aluminum and stainless steel materials through structured shop procedures and practices. Students use plumbing techniques to implement pumps, motors, cylinders, directional control valves, metering and check-and-flow control valves in working circuits during the hydraulic portion of the semester. They disassemble the components for inspection, repair or replacement and final test for proper operation. Eight credit hours.

GENERAL EDUCATION COURSES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG1101</td>
<td>College Composition I</td>
<td>3</td>
<td>Placement Exam or ENG1099</td>
</tr>
<tr>
<td>ENG1099</td>
<td>College Composition II</td>
<td>3</td>
<td>ENG1101</td>
</tr>
<tr>
<td>ENG2102</td>
<td>College Composition III</td>
<td>3</td>
<td>ENG1099 or Co Req.</td>
</tr>
<tr>
<td>MTH2112</td>
<td>College Algebra</td>
<td>3</td>
<td>MTH1100 or MTH1111</td>
</tr>
<tr>
<td>MTH2220</td>
<td>Trigonometry</td>
<td>3</td>
<td>MTH2112 or MTH2220</td>
</tr>
<tr>
<td>MTH2240</td>
<td>Survey of Calculus</td>
<td>3</td>
<td>MTH2220 or MTH2240</td>
</tr>
</tbody>
</table>

Important Note: Only courses in which a grade of “C” or higher is earned may be applied toward this Ranken degree.
EVENING PROGRAM CERTIFICATE IN INDUSTRIAL TECHNOLOGY

Ranken evening program students can earn a certificate in Industrial Technology by pursuing a general program customized to suit individual needs and interests. These courses combine classroom and shop projects to provide overall instruction, hands-on training and experience in the practices and skills needed by area-wide facilities, including universities, hospitals, hotels and industrial businesses.

To earn a certificate in Industrial Technology, students must complete a minimum of four courses from the following:

- Blueprint Reading
- Electrical Maintenance
- Industrial Maintenance
- Stationary Engineering (license preparation)

These classes meet on Mondays and Wednesdays or Tuesdays and Thursdays from 6:00 p.m. to 9:30 p.m.

For students interested in furthering their education, these courses can be credited toward the Bachelor of Science in Applied Management (BSAM) degree.

Stand-alone courses are also available in the following:

- Carpenterry Maintenance
- Fabrication and Welding Technology
- Precision Machining Technology
- Plumbing Technology
- Heating, Ventilation, Air Conditioning and Refrigeration Technology
- Solar Photovoltaic Technology Training
- Home Inspection Training
- Home Energy Audit Training
- Locksmith Training

ASSOCIATE OF APPLIED SCIENCE

Ranken is offering an Associate of Applied Science degree as a part of the evening program curriculum. You can earn your associate degree with a combination of Ranken’s standard evening school courses as well as our new online courses. You can also transfer credit from other accredited technical training programs, or have your technical work experience evaluated for possible transfer credit. (30 technical credit hours required for graduation.)

For all General Education course requirements, please turn to page 89. For more information about the BSAM degree, please turn to page 92.

INDUSTRIAL TECHNOLOGY (CONTINUED)

PROGRAM COURSES

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blueprint Reading</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Electrical Maintenance</td>
<td>6</td>
<td>ENTH01</td>
</tr>
<tr>
<td>Industrial Maintenance Mechanics</td>
<td>6</td>
<td>INT0100</td>
</tr>
<tr>
<td>Stationary Engineering</td>
<td>6</td>
<td>STE0100</td>
</tr>
</tbody>
</table>

Total Technical Credit Hours for Certificate Completion: 24 (minimum)

PROGRAM COURSES

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blueprint Reading</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Electrical Maintenance</td>
<td>6</td>
<td>ENTH01</td>
</tr>
<tr>
<td>Industrial Maintenance Mechanics</td>
<td>6</td>
<td>INT0100</td>
</tr>
<tr>
<td>Stationary Engineering</td>
<td>6</td>
<td>STE0100</td>
</tr>
</tbody>
</table>

Total Technical Credit Hours for Certificate Completion: 24 (minimum)

Important Note: Students may apply any or all courses from the programs listed above to total the 24 credits necessary to qualify for an Industrial Technology certificate. Electrical Maintenance, Industrial Maintenance and Stationary Engineering may be taken as one-year certificate programs.

ELECTRICAL MAINTENANCE

Emphasis is placed on troubleshooting, circuit diagrams, and motor starters and controls. Students become familiar with both balanced and unbalanced systems. Introduces wiring methods including cable and conduit bending as well as surface metal raceway and flexible wiring systems. The course also covers standard switching circuits, basic service and feeder calculations, branch circuit requirements, along with an introduction to motor controls. Six credit hours.

EMTH02 ELECTRICAL MAINTENANCE II

Emphasizes maintenance and continued instruction of motor control circuits, ladder diagrams, control relays, motor starters and diagram reading. It also introduces students to troubleshooting PLCs. (Does not include programming of PLCs.) The installation of a three-phase transformer with panel board feeding balanced and unbalanced loads is also covered. Six credit hours.

INDUSTRIAL MAINTENANCE

INT010 INDUSTRIAL MAINTENANCE MECHANICS

Includes instruction in math, basic terms, bearings, seals, industrial pumps, power transmission, power transmission components, brakes, clutches, use of V-belts and fan belts. Also covers basic steam, compressors and compressed gas systems. Six credit hours.

INT010 HYDRAULICS, MILLWRIGHT AND RIGGING

Includes instruction in the hydraulic transmission of force and energy, the operation of hydraulic pumps, hydraulic actuators, control of hydraulic energy through the use of pressure control valves, cylinders, directional control valves and flow control valves. The course also covers the millwright and rigging fundamentals of layout and leveling, rope, knots, splices, wire rope, chocks, weight calculations, CG cranes, hoists and ladders. Six credit hours.

STATIONARY ENGINEERING (LICENSE PREPARATION)

STE010 STATIONARY ENGINEERING I

Covers boilers, including the construction of different styles, pressure capabilities, different ways of firing, safety devices and water level controls, including efficiencies, pollution, boiler auxiliaries such as feedwater heaters, softeners and feedwater treatment. Students tour an industrial boiler room and learn about pumps, both piston and centrifugal, methods of sizing, pressures and prime movers. Six credit hours.

STE010 STATIONARY ENGINEERING II

Provides a history of steam engines over the last century with tours of steam engines still used today. Course covers the replacement of steam engines by turbines, how steam engines operate air compressors and how to maintain good compressed air as well as the basics of electricity and how to start and synchronize generators safely. The course will then focus on power generation, efficiency and how to attain the most productively from electrical equipment. Students will finish up the semester learning the basics of all industrial refrigeration with an emphasis on ammonia, efficiencies and safety. Six credit hours.

ADDITIONAL STAND-ALONE COURSES

SEG003 SOLAR PHOTOVOLTAIC (PV) TECHNOLOGY TRAINING

Students learn the basic types of the photovoltaic system and their applications for both stand-alone (battery backup) and utility interactive systems (grid tied). Students will learn about the PV system install, design, size calculations and installation safety. The student will be able to draw one-line electrical diagrams for interactive and stand-alone PV systems showing all major components and subsystems, and indicate the locations of the PV source and output circuits, inverter input and output circuits, charge controller and battery circuits. This course is taught in accordance with the NABCEP PV entry level training objectives and prepares students to take the NABCEP certification exam. At the end of the course, the student will be able to build a complete system from ground up. Lastly, the course covers the business side of the solar industry and helps the student understand what they need to know to run a solar business. Six credit hours.

INT010C HOME INSPECTION TRAINING

This course will teach students the fundamentals of inspecting structure, exteriors, roofing, electrical, plumbing, heating/cooling systems, insulation/ventilation systems, report writing and business development and marketing strategies. After completion of this course, students will be able to identify and properly document defects of a residential property within the standards of the industry. They will be able to properly document their findings on an inspection report. They will also learn essential skills in working with realtors, mortgage brokers, attorneys and financial institutions that play a key role in real estate transactions. Six credit hours.

INT010C HOME ENERGY AUDIT TRAINING

Energy audits have increased as the demand grows to lower expensive energy costs and move towards a sustainable future. There are tax credits from cities and the federal government for homeowners who implement recommendations made as a result of an energy audit. In this course you will learn the fundamentals of building science — thermodynamics, heat and transfer, moisture and humidity, airflow, insulation, thermal boundaries, R/U values, pressure boundaries, air sealing, blower door technology, ventilation, building calculations, combustion science and testing and energy conservation strategies. Six credit hours.

INT010C LOCKSMITH TRAINING

After completion of this course, students will be able to disassemble, repair and reassemble Kwikset, Schlage and import-type locks. They will also know how to drill a lock, know key identification, duplication, impression and key code generation, master keying, lock picking, and car opening. In addition to the technical elements of the program, students will understand the fundamentals of how to market and sustain a successful locksmith business. Whether students become part time or later become a full time locksmith, they will know the principles of operating a locksmith business. Six credit hours.

RANKEN EVENING PROGRAM...
SOLAR ENERGY SYSTEMS AND GREEN TECHNOLOGY

EVENING PROGRAM CERTIFICATE IN SOLAR ENERGY SYSTEMS AND GREEN TECHNOLOGY

Solar energy programs provide the training graduates need to enter the rapidly emerging green technology fields. According to the U.S. Department of Energy, Photovoltaic (PV) Technology is a young, growing high-tech industry that is going to create jobs and strengthen the economy.

PV makes use of the abundant energy of the sun and has little or no negative impact on our environment. It can be used in a wide range of products, from small consumer items to large commercial solar electric systems. Within the next ten years, PV electricity will be competitive in price with traditional sources of electricity and will become widely utilized.

Evening students can earn a certificate in Solar Energy Systems and Green Technology by pursuing this program and learn how to work with this important new technology and help reduce the world’s carbon footprint.

Prerequisite to the program is Electrical Maintenance I (EMT010) or an equivalent course. Each course may also be taken individually as a seminar.

PROGRAM COURSES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Description</th>
<th>Hours</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMT010</td>
<td>Electrical Maintenance I (or equivalanted)</td>
<td>6</td>
<td>EMT010</td>
</tr>
<tr>
<td>SEG00C</td>
<td>Solar Photovoltaic Technology Training</td>
<td>6</td>
<td>Total technical credit hours for certificate completion 52</td>
</tr>
</tbody>
</table>

SEG00C SOLAR PHOTOVOLTAIC (PV) TECHNOLOGY TRAINING

Students learn the basic types of the photovoltaic system and their applications for both stand-alone (battery backup) and utility interactive systems (grid tie). Students will learn about the PV system module, install, design, size calculations and installation safety. The student will be able to draw one-line electrical diagrams for interactive and stand-alone PV systems showing all major components and subsystems, and identify the locations of the PV source and output circuits, inverter input and output circuits, charge controller and battery circuits. This coursework is taught in accordance with the NABCEP PV entry level learning objectives and prepares students to take the NABCEP certification exam. At the end of the course, the student will be able to build a complete system from ground up. Lastly, the course covers the business side of the solar industry and helps the student understand what they need to know to run a solar business. Six credit hours.

ASSOCIATE OF TECHNOLOGY, ASSOCIATE OF SCIENCE OR CERTIFICATE OF TECHNOLOGY

Throughout the two-year associate degree program, students will gain practical experience while programming and operating modern machinery in a well-equipped facility similar to those commonly found in today’s industry. The curriculum includes mechanical and computer design, dimensioning, blueprint reading and fundamental tool making, as well as hands-on experience in basic hand tools and workshop technologies.

In addition, the program emphasizes the application of basic math principles in simulated shop situations. The program curriculum is comprised of various specialties, including:

- Computer Numerical Control (CNC) Programming
- Computer Aided Drafting (CAD)/Computer Aided Manufacturing (CAM)
- Inspection
- Maintenance Machining

By analyzing a company’s end product, constructing the parts and maintaining various pieces of equipment on an ongoing basis, students are exposed to problem-solving skills and are trained to meet the machining needs of today’s technical industries. Instruction occurs on the latest state-of-the-art equipment.

As a testament to industry support of this program, Ranken has one of the largest Haas Technical Centers in the region. Students are able to train on the state-of-the-art Haas CNC machines, giving them exposure to cutting edge technology.

Evening students can earn a certificate in Solar Energy Systems and Green Technology by pursuing this program and learn how to work with this important new technology and help reduce the world’s carbon footprint.
COURSE DESCRIPTIONS

PMT1001 INTRODUCTION TO MACHINING THEORY
Introduces students to an assortment of hand tools, measuring instruments and basic machine processes used in the machinist trade. Students will learn the safety and operation of machine tools such as a power saw, bench grinder, drill press and lathe, ... speeds and feed rates, proportions and ratios and concluding with an introduction to trigonometry. Five credit hours.

PMT1002 INTRODUCTION TO MACHINING LAB
Introduces hand tools, measuring tools and layout procedures, then transitions into basic machine principals, including safety, operation and part set-ups for primary and secondary machining operations on conventional machines. Students learn to read and interpret blueprints, make calculations, build machine set-ups and manufacture mechanical parts using a drill press, power saw, lathe and vertical and horizontal milling machines. Also, includes the basic care and use of various measuring instruments commonly used in the machinist trade. Eight credit hours.

PMT1010 MATHEMATICS FOR THE MACHINE TRADE
This course introduces the student to the mathematics needed to succeed in the machine trade. It provides an understanding of mathematical concepts and their application to the machine trade — with real problems that the student will encounter in the industry. Students will solve problems that contain fractions and percentages, use customary (English) or metric units of measure, apply the fundamentals of algebra, plane geometry and trigonometry to everyday machining problems including, finding areas and volumes and solving machining problems that involve compound angles. Three credit hours.

PMT1011 COMPUTER NUMERICAL CONTROL THEORY
Introduces students to basic numerical control programming, then transitions into advanced programming of a CNC lathe, vertical and horizontal machining centers with 4th axis capabilities. The hardware associated with Computerized Numerical Control (CNC), the cartesian coordinate system and absolute/incremental programming formats are covered. Also, the use of computers to program, edit and graphically plot programs for mechanical parts will be included. Five credit hours.

PMT2001 ADVANCED MACHINING THEORY
The course begins with reviewing fundamental layout tools, measuring instruments, machine set-ups and machining processes. It then transitions into advanced machining processes of intricate parts which require custom fixtureing and complex set-ups. In the tool and die/mold-making portion of this course, the student will learn the function and terminology of a stamping die and the molding process. Students will learn the theory of heat treating along with the grinding process required to manufacture a precision machine part. Five credit hours.

PMT2002 ADVANCED MACHINING LAB
Students apply their machining skills and technical knowledge in order to manufacture a complex mechanical part to blueprint tolerance specifications on conventional machines found in a machine shop. Participating in a team manufacturing project, they will work in small groups designing, problem solving and manufacturing a product that replicates common practices found in prototype part development. Students will use advanced inspection equipment including a Coordinate Measurement Machine and an Optical Comparator to verify the dimensions of the finished parts. Eight credit hours.

PMT2001 COMPUTER NUMERICAL CONTROL LAB
Introduces the student to programming and operation of Computerized Numerical Control (CNC) machine tools. Provides hands-on experience programming, setting-up and operating CNC equipment. Students will be provided with a blueprint and will be responsible for programming and editing a part, choosing the correct tooling and fixtureing, along with creating a set-up sheet document upon completion of the project. Eight credit hours.

PMT2002 CAD/CAM THEORY
Students learn Master Cam in order to create and manipulate 2D, surfaces and solid parts. They will use these parts to create tool paths to produce parts on Haas CNC (Computer Numerical Control) machines. The student will also learn the essentials of SolidWorks and will create parametric models of parts and assemblies they previously created using Master Cam. Five credit hours.

PMT2002 CAD/CAM LAB
Students will use CAD (Computer Aided Design) and CAM (Computer Aided Manufacturing) to design, draw and produce a variety of parts using Haas CNC (Computer Numerical Control) equipment. Using Master Cam and SolidWorks software, the students will learn how to draw 3D wire frame, surfaces and solid model parts. The students will also use Master Cam to develop the complex programs needed to produce a variety of parts on 3 and 4 axis Haas mills and 2 axis Haas lathes. The course will conclude with the student assembling the parts produced during the semester and creating a solid model of the finished assembly by using SolidWorks software. Eight credit hours.

PRECISION MACHINING TECHNOLOGY (CONTINUED)

GENERAL EDUCATION COURSES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG1101</td>
<td>College Composition I</td>
<td>3</td>
<td>Placement Exam or ENG1099</td>
</tr>
<tr>
<td>ENG2102</td>
<td>College Composition II</td>
<td>3</td>
<td>ENG1101</td>
</tr>
<tr>
<td>COM009</td>
<td>Oral Communications</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SOC1206</td>
<td>Principles of Sociology</td>
<td>3</td>
<td>ENG1099 (Co. Req.)</td>
</tr>
<tr>
<td>PSY1206</td>
<td>Introduction to Psychology</td>
<td>3</td>
<td>ENG1099 (Co. Req.)</td>
</tr>
<tr>
<td>MTH1100</td>
<td>Elementary Algebra</td>
<td>3</td>
<td>MTH1110</td>
</tr>
<tr>
<td>MTH1101</td>
<td>Intermediate Algebra</td>
<td>3</td>
<td>MTH1110</td>
</tr>
<tr>
<td>CIT1100</td>
<td>Computer Literacy</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>WFD1200</td>
<td>Job Search Success</td>
<td>1</td>
<td>MTH2220 or BIS2240 (Co. Req.)</td>
</tr>
<tr>
<td>MTH2100</td>
<td>College Algebra</td>
<td>3</td>
<td>MTH1100 or MTH1110</td>
</tr>
<tr>
<td>MTH2101</td>
<td>Survey of Calculus</td>
<td>3</td>
<td>MTH2220</td>
</tr>
<tr>
<td>MTH2102</td>
<td>Trigonometry</td>
<td>3</td>
<td>MTH2100</td>
</tr>
<tr>
<td>MTH2103</td>
<td>Technical Communications</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CIT102</td>
<td>Computer Literacy</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>WFD1200</td>
<td>Job Search Success</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

GENERAL EDUCATION COURSES (certificate of technology)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIT1110</td>
<td>Computer Literacy</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>WFD1200</td>
<td>Job Search Success</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Important Note: Only courses in which a grade of “C” or higher is earned may be applied toward this Ranken degree.
These classes meet Mondays and Wednesdays or Tuesdays and Thursdays from 6:00 p.m. to 9:30 p.m. For students interested in furthering their education, these courses can be credited toward the Bachelor of Science in Applied Management (BSAM) degree.

ASSOCIATE OF APPLIED SCIENCE

Ranken is offering an Associate of Applied Science degree as a part of its evening program curriculum. You can earn your associate degree with a combination of Ranken’s standard evening school courses as well as our new online courses. You can also transfer credit from other accredited technical training programs, or have your technical work experience evaluated for possible transfer credit. (30 technical credit hours required for graduation.)

For all General Education course requirements, please turn to page 89. For more information about the BSAM degree, please turn to page 92.

PROGRAM COURSES

<table>
<thead>
<tr>
<th>Section</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section One</td>
<td>PMT0111</td>
<td>Engine Lathe Fundamentals</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Section Two</td>
<td>PMT0123</td>
<td>Milled Machine Fundamentals</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Section Three</td>
<td>PMT0224</td>
<td>CNC Programming</td>
<td>6</td>
<td>PMT0211</td>
</tr>
<tr>
<td>Section Four</td>
<td>PMT0225</td>
<td>CAD/CAM</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Section Five</td>
<td>PMT0226</td>
<td>CAD/CAM</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Courses of which a grade of “C” or higher is earned may be applied toward this Ranken certificate.

COURSE DESCRIPTIONS

PMT0111 ENGINE LATHE FUNDAMENTALS

The student will concentrate on the manual lathe. They will learn turning, threading, taper turning and drilling operations. Students will learn setups such as, between centers, three jaw chucks and four jaw chucks. They will also have lessons on basic right angle trigonometry, print reading, drill presses, saws and lay-out. Six credit hours.

PMT0123 MILLING MACHINE FUNDAMENTALS

The student will concentrate on the vertical milling machine. They will learn the set-up and operations of a mill. Students will also have lessons on basic right angle trigonometry, print reading, drill presses, saws and lay-out. Six credit hours.

PMT0224 ADVANCED MACHINING

Students will be using lathes, mills and surface grinders. The projects involve assembly and tooling used in industry. Trigonometry, carbide tooling and grinding will also be covered. Six credit hours.

PMT0225 CNC PROGRAMMING

Students will learn basic CNC programming, including G and M codes, unique codes and thread milling. The course also covers the CNC lathe and students will learn how to set-up and operate Haas CNC machine tools. Six credit hours.

PMT0226 CAD/CAM

Students will begin by learning Master Cam software in order to draw blueprints with the aid of a computer. These basic drawing skills will develop into drawing 3D wire frame and solid model parts. The mill and lathe CAM instruction will be used to generate programs and machine finished parts. Six credit hours.

FWL1100 FUNDAMENTALS OF WELDING TECHNOLOGY

Introduces students to welding and cutting processes in both theory and shop. The course provides an overview of various techniques, including Shield Metal Arc Welding (SMAW), Flux Cored Arc Welding (FCAW), Gas Metal Arc Welding (GMAW) and Gas Tungsten Arc Welding (GTAW) to be applied on various metals. The emphasis is to develop proper welding techniques in all positions. Students will also learn the procedures for preparing materials using oxy-fuel cutting and carbon arc gouging. By the end of the course, students will be prepared for the American Welding Society (AWS) certification test and vertical SMAW, GMAW, FCAW on steel plates. Twelve credit hours.

FWL1210 BLUEPRINT READING AND QUALITY INSPECTION

Offers an in-depth study of blueprint reading, students will have a complete understanding of typical weld symbols and the blueprints used throughout the welding industry, as well as, basic weld inspection. Three credit hours.
EVENING PROGRAM CERTIFICATE IN FABRICATION AND WELDING

The evening program curriculum for Fabrication and Welding includes oxy-fuel cutting, Shielded Metal Arc Welding (SMAW), Gas Metal Arc Welding (GMAW), Gas Tungsten Arc Welding (GTAW), and Flux Cored Arc Welding (FCAW). The theory for each of these processes is discussed along with proper joint design and proper welding techniques.

For students interested in furthering their education, these courses are creditable toward our Associate of Applied Science (AAS) and Bachelor of Science in Applied Management (BSAM) degrees. Please see our AAS and BSAM evening program offerings on page 90.

COURSE DESCRIPTIONS

FWL0110 WELDING I
Students will learn the necessary skills for welding and cutting processes used in the welding and fabrication industry. Processes covered in this program include, Shielded Metal Arc Welding (SMAW), FCAW, GTAW, and Gas Tungsten Arc Welding (GTAW), to be applied on various metals. The emphasis is to develop proper welding techniques in the flat and horizontal positions. The procedures for preparing materials—oxy-fuel cutting and carbon arc gouging—are included in the curriculum. Six credit hours.

FWL0120 WELDING II
Focuses on the skills required to perform welds in various positions. Students will be prepared for the AWS certification test in vertical and horizontal positions. Students will also learn to weld on pipe using the GTAW process. Six credit hours.

FWL0231 ADVANCED GAS TUNGSTEN ARC WELDING (GTAW/TIG)
Covers Advanced Gas Tungsten Arc Welding (GTAW/TIG) welding processes by using mild steel, stainless steel, and aluminum in all positions. Students will also learn to weld on pipe using the GTAW/TIG process. Six credit hours.

FWL0230 ADVANCED SHIELDED METAL ARC WELDING (SMAW/STICK)
Focuses on the skills for welding mild steel pipe in various positions. Students will be prepared to receive a certification in pipe welding. Six credit hours.

FWL0121 ADVANCED GAS METAL ARC WELDING (GMAW/MIG) AND FLUX CORED ARC WELDING (FCAW)
Develop advanced skills in the Gas Metal Arc Welding (GMAW) and Flux Cored Arc Welding (FCAW) processes. Students will learn to weld by completing projects, including pipe welding. Six credit hours.

FWL0122 WELDING INSPECTION AND PRINT READING
Offers an in-depth study of blueprint reading and the ability to interpret shop drawings. Students will be introduced to different types of welding inspection and inspection principles, as well as the metallurgy related to welding. Six credit hours.

FWL0123 STRUCTURAL FABRICATION
Focusing on fabricating and the cutting and welding of components in the structural steel fabrication field. Students will learn the necessary setup and operation of equipment used in the industry. They will also learn to fabricate parts using blueprint formats. Six credit hours.

FWL0112 CNC CUTTING/BLUEPRINT READING
Covers the programming, setup and operation of a plasma cutting table. Students are also prepared in advanced blueprint reading and drawing interpretation. Six credit hours.

PROGRAM COURSES

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>FWL0110 Welding I</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>FWL0120 Welding II</td>
<td>6</td>
<td>FWL0110 (Co. Req.)</td>
</tr>
<tr>
<td>FWL0231 Advanced GTAW/TIG</td>
<td>6</td>
<td>FWL0120</td>
</tr>
<tr>
<td>FWL0230 Advanced SMAW/STICK</td>
<td>6</td>
<td>FWL0110, FWL0120</td>
</tr>
<tr>
<td>FWL0122 Structural Fabrication</td>
<td>6</td>
<td>FWL0110</td>
</tr>
<tr>
<td>FWL0123 Chassis Fabrication</td>
<td>6</td>
<td>FWL0110</td>
</tr>
<tr>
<td>FWL0112 CNC Cutting/Blueprint Reading</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Total Technical Credit Hours for Certificate Completion: 18

GENERAL EDUCATION AND DEGREE OPTIONS